
L4/Darwin: Evolving UNIX

Geoffrey Lee and Charles Gray
National ICT Australia, Sydney, Australia

Abstract

UNIX has remained a mainstay of modern computing.
With its foundations of security, reliability, performance
and configurability, UNIX has adapted to and is used in
a vast array of environments.

While UNIX fosters robustness, modularity and a
“smaller is better” philosophy, that scrutiny is generally
not applied to the kernel itself. Modern UNIX kernels
have large, unwieldy code bases that do not enjoy the
benefits seen in the user environment.

Apple’s Darwin kernel is the open-source core of the
Mac OS X operating system. Like most modern UNIX
systems, the kernel boasts modern features such as 64-
bit address spaces, robust hot-plug and support for server
and workstation workloads.

L4/Darwin (Darbat), a virtualised Darwin system run-
ning on the L4 microkernel, aims to address the prob-
lem of the ever-growing UNIX kernel. Using the high-
performance L4 microkernel, Darbat can isolate kernel
modules, such as device drivers, using hardware protec-
tion while maintaining binary compatibility and perfor-
mance. This modularisation also allows Darbat to use
L4 as an advanced hypervisor to support multiple oper-
ating system instances for server consolidation.

This paper covers the on-going design and implemen-
tation of the Darbat project and the experiences of bring-
ing the strengths of UNIX into the UNIX kernel itself.

1 Introduction
Since its inception at Bell Labs in 1969, UNIX has
evolved and grown and has proven to withstand the test
of time. Today, UNIX systems are as relevant as ever.

UNIX fosters the creation of small, specific tools,
providing powerful mechanisms for joining them to-
gether to create more complete and powerful applica-
tions. UNIX sockets and pipes are the back-bone of data
processing.

UNIX is also robust, in that programs are all isolated
from each other. A failure in one program can at worst
cause that program to crash, and will not cause the entire
computer system to misbehave as a whole.

It is quite interesting to note that these properties of
UNIX do not generally apply to the kernel.

Modern UNIX kernels support vastly more features
than their ancestors. These features come at the cost of
increased kernel size and complexity. As an example,

the full Linux kernel tree currently contains millions of
lines of code for all drivers and components.

Even though all this code can never be running at
once, such large, modular systems have a number of im-
plications. Modules need to be selected, configured and
tested to work together. Reconfiguring and restarting an
operating system kernel, however, has far more implica-
tions than restarting an application service since it typi-
cally requires a costly full system reboot. In particular,
having to restart a user application is a localised nui-
sance, however, restarting the kernel will result in down-
time for all the user applications that were running on top
of it.

System configuration can also be a complicated pro-
cess. Compile-time options such as resource limits or
locking behaviour dictate a performance/functionality
trade-off. Unforeseen changes in workload or minor
hardware expansions may require costly kernel rebuilds
and testing if the original kernel configuration did not
account for these changes. The alternative, to conser-
vatively configure your kernel for future workloads will
most likely lead to a reduction in peak performance.

Bugs and incompatibilities are also problematic for
inflexible kernels. Some drivers or modules may require
a specific kernel version or set of sub-optimal global
configuration options. Modules may also have bugs
which cause problems on SMP configurations or incom-
patibilities with other modules because it is not possible
to ever test all possible configurations.

A common approach to solving this problem is to use
virtualisation. VMWare [VMW], Xen [BDF+03] and
Parallels [Par] are hypervisors that allow execution of
multiple operating systems concurrently on the one com-
puter. Running multiple operating systems side-by-side
provides greater flexibility in system composition. Each
kernel can be configured to suit the workload of appli-
cations which it will serve. A related approach taken
by LeVasseur et al. [LUC+05] loads operating system
instances inside virtual machines to utilise their device
driver functionality.

The virtualised operating system approach goes a long
way to improving the UNIX kernel, however it is a very
coarse-grained approach to running multiple instances
of whole operating systems. In this paper we discuss
L4/Darwin (Darbat). Darbat provides a more flexible
approach to virtualisation which promotes the “small

1



Figure 1: The Darwin system.

is beautiful” philosophy by decomposing the operating
system itself. We use the Darwin kernel to demonstrate
operating system modularisation on top of the L4 micro-
kernel.

2 Darwin and Mac OS X

Darwin is the UNIX-based open-source core of the
Mac OS X operating system. It is a collection of a large
number of open-source projects, which are freely avail-
able from Apple’s open-source website.

The Darwin system has a very long history. Its prede-
cessor, known as NEXTSTEP, was originally conceived
at NeXT in the 1980s. When NeXT was acquired by Ap-
ple in 1997, the NEXTSTEP operating system became
the basis for Apple’s replacement to its aging Mac OS
operating system. This would come to be known as
Mac OS X, pronounced “Mac OS Ten”. In 2000, Ap-
ple released the source code for the UNIX foundations
of Mac OS X under an open-source license [App00].

Figure 1 shows a block diagram of the Darwin sys-
tem. At the heart of Darwin is xnu. Despite its status
as a single project, the xnu project actually contains sev-
eral separate subsystems. As the kernel, xnu executes on
the CPU in privileged mode giving it full control of the
system.

Xnu is divided into three major components, the Mach
microkernel, the BSD UNIX layer and the I/O Kit de-
vice driver framework. While these are logically distinct
modules, they are co-located in the kernel address space
and invoke each other via regular C function call inter-
faces.

The kernel also contains other minor modules. The
Platform Expert, as the name suggests, is responsible for
platform services such as boot arguments. There is also a
kernel linker for patching inkernel extensions (KEXTs)
such as drivers at run-time.

2.1 Mach
Mach began as an operating systems research project at
Carnegie Mellon University in 1985 [RJO+89]. Mach is
a first-generation microkernel, designed to provide flex-
ible abstractions such asinter-process communication
(IPC) andvirtual memory (VM) services. Using these
kernel services it is possible to build a full operating sys-
tem as a set of user processes.

The Mach subsystem as shipped with the xnu project
is derived from Mach 3.0 and has undergone extensive
improvements made by Apple. Features such as perfor-
mance enhancements, a unified buffer cache and 64-bit
support have been added.

Mach is the arbiter of the whole operating system. It
provides the low-level exception handlers, threads and
run-queue management as well as page-tables, virtual
memory objects and address spaces. All system opera-
tions, be they in the I/O Kit, BSD or user applications,
are managed at the lowest level by Mach.

2.2 BSD
The xnu kernel also contains a BSD subsystem. It im-
plements features that one would expect to find in a
any modern UNIX kernel, such as filesystems, a TCP/IP
stack, UNIX processes and signals. The kernel BSD im-
plementation is derived from 4.4BSD, although a signif-
icant portion of the code base has been modernised with
ideas and code from FreeBSD, NetBSD and OpenBSD.

Migrating BSD to run as a module on top of the Mach
subsystem creates a lot of duplicated code in the form of
trap handlers, VM systems and thread and process man-
agement. The xnu BSD has been stripped of this du-
plication and uses the underlying Mach functionality in-
stead. The BSD layer provides just the high-level UNIX
functionality.

2.3 System Calls
In Darwin, kernel requests can be made in three ways:
BSD traps, Mach traps, and Machremote procedure
calls (RPC). Mach has very few system-call entry points
with most Mach operations implemented as Mach RPC,
built on top of the Mach IPC infrastructure. This in-
cludes such operations as VM, thread or task manipula-
tions.

System-call traps are identified by a system-call num-
ber argument which is checked on kernel entry. The
system-call number indexes into either the Mach or BSD
system-call tables, depending on the sign of the number.

In the case of Mach services exported via an RPC
interface, the arguments to the call are packed into a
Mach IPC message. Themach msg() Mach system-
call is invoked and the message is then dispatched to the
correct Mach service. While it is technically possible
to manually pack the arguments into a Mach message

2



and invoke themach msg() system-call directly, this is
rarely done. Instead, such interfaces are usually defined
using theMach interface generator (MIG) [DJT89].
MIG is used to generate the appropriate source-code and
header stubs for both the server side and the client side.

2.4 I/O Kit
The I/O Kit is the object-oriented device driver subsys-
tem of Darwin, written in C++. In order to make the lan-
guage suitable for use in the kernel environment, only a
small subset of its features are used. Exceptions, multi-
ple inheritance and templates are not used in the I/O Kit
nor in I/O Kit drivers. The I/O Kit also uses aruntime
type information (RTTI) system which is provided by
thelibkern library rather than the default C++ RTTI.

I/O Kit supports many of the features that one would
expect to find in a driver framework of any modern
general-purpose operating system, such as device hot-
plugging, power management, dynamic loading and un-
loading of driver code and automatic device configura-
tion. Despite the fact that the I/O Kit is written from
scratch, it is heavily based on the Driver Kit, the driver
framework found in NEXTSTEP 3.x.

The I/O Kit adopts a modular, layered approach that
captures the relationships between components in the
system. These components can be split into two types of
objects:drivers andnubs. A driver is an object instance
that knows how to drive a particular hardware device.
An example of this would be a disk controller driver ob-
ject. This particular object would know how to drive a
specific model of disk controller.

A nub object is a connect point between two driver
objects. When the I/O stack is built, nubs are created by
drivers to represent an attachment point for other drivers.
For example, the PCI bridge driver exports nubs which
act as connection points for drivers to connect to drive
the various devices that sit on the PCI bus. Figure 2
illustrates an example of the driver-nub relationship. For
the USB case, it additionally shows the layout of a driver
stack.

The I/O Kit is described in detail in the I/O Kit Fun-
damentals document which is available for download on
Apple’s website [App04].

3 Darbat
Microkernels were touted to offer a framework for better
security, increased flexibility and increased robustness.
The microkernel paradigm was to build systems in small
component blocks isolated from each other, hence lim-
iting malice and the amount of of damage that any one
component can cause, while providing better flexibility
of how a particular system should be laid out. How-
ever, these goals were never realised out of first genera-
tion microkernels such as Mach. Performance problems

PCI nubs

PCI bus driver

IDE controller
USB

host controller
driver driver

Ethernet
driver

USB device nubUSB device nub

USB keyboard driver USB mouse driver

PCI nubs

Figure 2: An example of a driver and nub relationship.

Figure 3: The Darbat architecture.

meant that system designers eventually started to move
these system components into the protection domain of
the kernel. Indeed, the xnu kernel itself cannot be de-
scribed as a microkernel-based system as all these sep-
arate subsystems run within a single protection domain.
This means that they inherit the overhead of running on
top of a slow microkernel, with none of the benefits that
the microkernel was supposed to provide.

L4/Darwin is a port of Darwin to run on top of the
L4 microkernel as a para-virtualised guest operating sys-
tem. Para-virtualisation is a widely-used technique of
virtualisation that involves replacing privileged opera-
tions with calls to a hypervisor. Although this technique
involves significant engineering cost compared to other
methods such as pre-virtualisation as described by LeV-
asseur et al. [LUC+05], it allows for significant flexibil-
ity in the design scope for the L4/Darwin system.

3.1 Darbat Design

The Darbat design is shown in Figure 3. Darbat cur-
rently para-virtualises the Darwin kernel into two mod-
ules, the Mach and BSD kernel component (L4/xnu) and
the I/O Kit. These modules are then run as de-privileged
programs on top of the L4 microkernel.

Since xnu and I/O Kit are independent processes, it

3



is possible to start and stop them as easily as a regular
UNIX application. This is the foundation of Darbat’s
flexibility.

3.2 L4
Darbat uses the L4 microkernel [Lie95] as an advanced
hypervisor. L4 provides fast, light-weight mechanisms
which allows building operating systems with secure,
isolated modules. Isolation ensures that a failure in a
single user-land module does not inherently imply the
failure of the whole system.

L4 is a high-performance, industrial-strength second-
generation microkernel. The L4 design recognises that
in order to be fast and yet secure, it must implement the
bare minimum required on top of the hardware.

The philosophy behind L4 is different to that of Mach.
The Mach microkernel approach is to generalize abstrac-
tions to suit all possible uses. L4 does not provide gen-
eralised, heavy-weight abstractions but instead acknowl-
edges how the underlying hardware works..

The overly generalised Mach model leads to an imple-
mentation that is by design slow and cumbersome. An
IPC operation on Mach takes hundreds of thousands of
processor cycles to complete, while on L4, IPC perfor-
mance dominated by hardware costs.

Like Mach, L4 provides address spaces, threads and
IPC via message-passing. The VM and IPC models in
L4 are very different to that of Mach. Mach provides a
memory object abstraction which represents a region of
VM. This object can then be mapped and shared between
address spaces, potentially withcopy-on-write (COW)
semantics. The structure of whole or partial address
spaces can also be shared.

In contrast, L4 simply allows the construction of ad-
dress spaces using power-of-two sized pages. This keeps
the kernel small and fast and leaves the complicated data
structures to be managed by operating systems at user-
level.

The IPC interface in L4 is similarly minimal. Instead
of complicated message data structures, L4 only allows
a small number of machine words to be delivered in a
single IPC operation. On most architectures the aver-
age message (around 8 words) can be delivered entirely
in CPU registers without having to copy memory. L4
provides only synchronous data delivery without kernel
buffering to eliminate kernel buffers and ensure CPU
throughput. Using this fast, secure abstraction, other
IPC models can be layered on top with shared memory
for bulk data transfers. This provides excellent best (and
often common) case performance with negligible degra-
dation in the worst case. While providing impressive
direct costs for kernel operations, the L4 design also op-
timises the hidden costs of cache and TLB footprint.

The version of L4 used in Darbat is

NICTA::Pistachio-embedded [NIC]. Darbat is built
using the L4/Iguana framework. The NICTA::Pistachio-
embedded kernel is a derivative of the L4Ka::Pistachio
kernel, which is developed jointly by the University of
Karlsruhe and University of New South Wales [L4K].
The NICTA::Pistachio-embedded kernel is under active
development by National ICT Australia.

3.3 Principle of Least Authority
Modern UNIX kernels are large and contain millions of
lines of source code, and they run all this code with full
supervisory privileges on the processor. Only a frac-
tion of the code actually requires this privilege, however.
Darbat applies theprinciple of least authority (POLA).
This is the same principle employed by many UNIX
setuid applications which drop root privileges once
they have acquired the necessary resources to reduce the
damage of an exploit. To this end, we have modified
the xnu components to run completely de-privileged, us-
ing L4 as a proxy for privileged operations as necessary.
Compromising a single operating system instance does
not allow a hacker to compromise the device drivers or
the rest of the machine.

3.4 L4/xnu
L4/xnu is the Mach and BSD components of xnu para-
virtualised to run on top of L4. L4/xnu uses L4 IPC
and shared memory to communicate with I/O Kit drivers
instead of being co-located in the one protection domain.

Since Mach is the lowest level of Darwin, porting
xnu to L4 required changing all the low-level bindings.
L4/xnu does this by creating a new L4 architecture for
Mach, alongside i386 and PPC. This allows L4/xnu to
hook into exception handling, memory management,
threading, system-calls and the low-level hardware rou-
tines. L4/xnu needs surprisingly few changes to the
generic code in xnu.

One of the major changes in L4/xnu is the system-call
handling mechanism. Instead of standard trap instruc-
tions, user applications running on L4/xnu use L4 IPC to
invoke system-calls in its instance of the kernel. The L4
message contains the system-call number and arguments
normally found on the stack. This is a performance op-
timisation to remove expensivecopyin operations.

L4/xnu is free to completely change the system-call
mechanism yet remain compatible because Darwin de-
fines alibrary interface rather than asystem-call inter-
face. Darbat simply uses a slightly modifiedlibc li-
brary and remains binary compatible with existing Dar-
win applications.

While most low-level abstractions in L4/xnu have
been modified to use the L4 equivalent, one thing which
has remained the same is the threading structure. Xnu
is a multi-threaded kernel, however unlike user tasks,

4



L4/xnu multiplexes all kernel threads onto a single L4
thread. This is necessary because xnu contains large
amount of legacy code, some of which disables all CPU
interrupts to enforce critical sections. For security rea-
sons L4 cannot let any application turn off interrupts. In-
stead L4/xnu thread switches itself in a single L4 thread
with the timer and other interrupt sources generating ex-
ceptions. This allows L4/xnu to efficiently emulate inter-
rupt masking and requires no changes to legacy Darwin
code.

3.5 L4 I/O Kit
The L4 I/O Kit is a port of the Darwin device driver
framework that runs in user mode [Lee05]. The L4
I/O Kit runs as a completely separate service from Dar-
bat and does not depend on its presence.

The main design decisions made in porting the I/O Kit
were as follows. First was the early realisation that
that the L4-based I/O Kit would have to accommodate
binary-only drivers. It was decided that no changes
should be made to the publicly exported I/O Kit inter-
face.

Second, it was decided that the I/O Kit should run as
a separate service and could serve as a basis for much
of the flexibility that we hope to achieve in our system.
At the same time, we realized that the internals of the
I/O Kit was dependent on Mach for common operating
system services such as thread management or synchro-
nisation primitives. In addition, there are some com-
monly used features of the Mach kernel such asthread
callouts that many drivers call directly because there is
no equivalent in the I/O Kit.

These Mach-based routines which the I/O Kit and
drivers depend on are provided via a thin Mach compat-
ibility library calledxnuglue. This layer provides the
necessary OS primitives such as locks, semaphores and
threads using L4 abstractions. In particular, effort has
been made so that they are ABI compatible with their
xnu counterparts. This allowed us to completely sepa-
rate the I/O Kit into a separate service, while sparing us
the effort of having to modify the I/O Kit’s underlying
Mach-dependent implementation, as well as providing
commonly used xnu functions for other I/O Kit mod-
ules. Unlike the Darbat kernel,xnuglue is fully multi-
threaded. Xnuglue “Mach” threads are emulated as
native L4 threads. The actual code inxnuglue is ap-
proximately 4000 lines of C source code, with a very
tiny fraction of assembly code.

3.6 Kernel Composition
Separating the kernel and device drivers adds a lot of
flexibility which allows Darbat to solve a number of in-
teresting problems. For example, Darbat can be used
to provide standard server consolidation features. The

administrator can configure the system to start a single
I/O Kit instance to drive the hardware as well as a num-
ber of xnu instances which present a standard Darwin
system. Each xnu instance can have a different root user,
a different setup and access to different physical devices.

In general, Darbat makes the administrator free to
create various operating system and driver module in-
stances, assign resources, and hook them up in interest-
ing ways. This may include physical partitioning of the
CPUs, RAM and device between different users.

Darbat can also be used to isolate components for se-
curity. The system could be configured to run a trusted
kernel for sensitive applications and a general-purpose
kernel for other services. Kernel migration can be eased
with applications transitioned to a new kernel version
one-by-one without having to cut the whole system over
in one go.

It is well-documented that while drivers account
for the majority of OS code, they are error-prone
[CYC+01]. A setup similar to LeVasseur et al.
[LUSG04] can be used to isolate these errors and re-
cover from them. Under this scheme, multiple I/O Kits
can be run alongside each other, each with its own set of
drivers. A failure of one driver in one I/O Kit instance
can at worst only crash that instance of the I/O Kit, hence
greatly improving fault isolation and system dependabil-
ity.

L4 I/O Kit provides a self-contained driver module
without any dependency on the rest of the xnu system.
Darbat therefore allows other virtualised operating sys-
tems to reuse I/O Kit driver code. Before L4/xnu was
stable enough to be used, Wombat [LvSH05], a para-
virtualised version of Linux, was routinely used for test-
ing and benchmarking I/O Kit drivers. Ultimately we
would like to be able to support Darwin and Wombat
running side-by-side with heterogeneous applications
sharing the same devices and file systems.

Darbat can also be used to accommodate some inter-
esting trusted applications. Remote management con-
soles, watchdogs and other low-level utilities are rela-
tively straight-forward to implement in software, how-
ever their ability is somewhat limited if they cease to
function when the kernel locks up or panics. For this rea-
son such services usually require special hardware and
are only available on high-end machines. Under Darbat
these services can be built as reliable software solutions.
By executing isolated from the main kernel they need
not be dependent on the UNIX kernel or other device
drivers.

At the lowest level, all L4 processes use IPC mes-
sages and shared memory to get their work done. In
many respects, this is analogous to how UNIX applica-
tions are built up using pipes and files. L4 provides the
mechanisms allowing messages to be filtered, modified,

5



injected or logged. This will provide a powerful tool
for administrators, giving them greater dynamic control
over the kernel.

Having multiple I/O Kit instances can also be a boon
for compatibility. For example, it would allow for the
co-existence of both 32-bit and 64-bit I/O Kit drivers,
running in a 32-bit instance and a 64-bit instance of the
I/O Kit respectively. In addition to this, this setup could
be used to solve software compatibility issues. When-
ever a kernel interface change is made, one must be care-
ful not to break compatibility with existing users of the
interface. This often means implementing work-arounds
in the code, giving rise to warts in the implementation of
the software in the name of compatibility. In the Darbat
system, supporting an older driver is as simple as spawn-
ing a separate I/O Kit instance that supports the driver.

3.7 Ease of Debugging
Developing systems code can often be a frustrating and
painful process. Unlike user code, which can at worst
bring down the buggy program itself, a fault in sys-
tems code will usually bring down the whole system.
This fact has led to complicated schemes such as debug-
gers that try to inspect the state of the system with what
limited information can be gathered from a system that
is by definition in an inconsistent state, and repeating
the “crash, debug, fix, rebuild” cycle. With an isolated
driver framework, this no longer has to be the case. The
code can be tested and fixed on the local machine, and
the driver can then be restarted with a new, fixed copy.

3.8 Performance Considerations
Despite the potential advantages that a microkernel-
based design would bring, it should not be forgotten that
performance considerations in commodity UNIX sys-
tems are just as important.

One of the common arguments against a microkernel-
based design is that such a design will perform much
more work than a monolithic-based design, in the form
of context switches due to IPC. Context switches cost
processor cycles, and have other adverse effects such as
cache pollution. Employing proper microkernel design
by laying out the system in such a way that IPC opera-
tions are used sparingly is the key to unlocking the per-
formance and power of a microkernel such as L4.

In order to show that IPC operations do not necessar-
ily have to be costly and slow, we modified the system-
call path in Darbat to use an L4 IPC-based implementa-
tion that has only undergone slight optimisations. Fig-
ure 4 illustrates the actions that would be done when a
user applications invokes the read(2) UNIX system-call
in a Darbat system. Even though in theory the L4-based
system has to perform more work, the cost of the L4
IPC-based implementation is similar to the trap-based

L4/xnu

read()

L4

Ipc() User

Kernel

sys_read()
syscall_loop()

User application

Figure 4: The Darbat system-call path.

implementation found in native xnu.
One reason for this is that Darwin provides the full

32-bit address space to applications. In this case both
Darwin and Darbat need to perform a full address
space switch to execute the system-call. L4 benefits
from its highly optimised context-switch code and fewer
copyin operations due to the use of the IPC payload.

4 Experiences

4.1 Xnu
An initial Darbat design goal was to remove Mach com-
pletely. However, we have found that this is not fea-
sible. Generally speaking, the Darwin system is thor-
oughly dependent on the Mach infrastructure. Instead,
we have chosen to co-locate Mach and the BSD subsys-
tems together and slot L4 underneath them. Originally,
we only brought in a subset of Mach. Over time, as we
brought the system up more and more up to a usable
state, we discovered that we have essentially pulled in
almost all of the Mach code base.

Darbat maintains compatibility with existing Darwin
applications, even to the extent that we can run unmod-
ified programs as shipped with Mac OS X for Intel.
Keeping the Mach code base has allowed us to quickly
get L4/Darwin into a usable state, while still demonstrat-
ing the advantages of L4.

4.2 L4 I/O Kit
One lesson learned from porting the I/O Kit to L4 was
that despite the obvious challenges of trying to isolate
a driver framework taken from a monolithic operating
system such as Darwin, as long as there are well-defined
interfaces, it is possible to do so. It was possible to get
L4 I/O Kit up to a benchmarkable state over the course
of a couple of months. In contrast, we have made multi-
ple attempts to isolate Linux device drivers in a para-
virtualised Linux driver subsystem environment, with
little success.

With the release of Intel-based Apple hardware that
required drivers that were were only available in binary
form, we were forced to make a difficult decision: wait

6



for the source to become available, write drivers from
scratch for the devices on the hardware, some of which
have poor to nonexistent documentation, or load the bi-
nary drivers provided by Apple. We were pleasantly sur-
prised how little effort was required for the latter. We
have managed to load a fairly large set of device drivers,
some of which we heavily depend on. The drivers them-
selves are unaware they are running outside a vanilla xnu
system and in user-mode. The consistent interface pro-
vided by the I/O Kit provides the guaranteed ABI that
allows binary drivers to remain portable across multiple
releases of an operating system and vastly different run-
time environments.

Despite the enormous flexibility that this gives us, the
xnuglue layer means that only very minimal changes
had to be made to the I/O Kit. All but two of the
changes were compile-time changes due to slightly dif-
ferent headers supplied by the xnu source tree and our
own version of them.

4.3 Performance
Conventional wisdom is that Mac OS X is slow, as a di-
rect result of Darwin, and specifically the use of Mach.
Upon beginning this project we were fairly confident
that it would be easy to demonstrate drastic speed-ups
with the shift to a much faster microkernel. Conven-
tional wisdom seems to be wrong, however.

Generally speaking, xnu is well optimised. One main
reason for deciding to pull in Mach instead of writing
a compatibility layer is that re-writing Mach features
sufficiently to support existing applications would al-
most certainly result in a bigger, slower, buggier ver-
sion of Mach. Our performance enhancements will be
demonstrated by optimising around Mach, not Mach it-
self. While this may not be as easy as first thought, there
are system-wide speed-ups to be made in IPC and thread
operations.

4.4 Portability
The L4 variant used in Darbat, Pistachio, was explicitly
designed with portability in mind. There are ports to a
large number of architectures including IA-32, x8664,
IA-64, MIPS, Alpha, ARM and PowerPC to name a few.
Because Darbat uses L4 predominantly as a hardware
abstraction layer, this means that Darbat on L4 is rel-
atively easy to port to other architectures supported by
L4. Our experiments with Darbat components on other
platforms show promising results, and with much less
effort than would be required to make a native port.

4.5 Module Independence
Although splitting the I/O Kit and the rest of xnu into
stand-alone modules initially took substantial effort, we
have found it to be an extremely useful feature. Dur-

ing development it has been very useful for debugging
to be able to boot the system with xnu or the I/O Kit dis-
abled to test each module in isolation. This allowed us
to quickly isolate bugs to either module, or the interface
between them. Once it is known which module a bug
is in, and a few vague symptoms, it can generally be re-
duced to a subclass of bug which makes it easier to track
down. This greatly reduces the amount of time it takes
to hunt down and fix even the nastiest kernel bugs.

Occasionally during development, however, and es-
pecially when bringing up new interfaces, some tempo-
rary dependencies between the two modules may creep
in. Invariably this causes more problems than the “quick
fix” was trying to solve, typically leading to one or both
modules randomly failing on startup. Usually, when im-
plemented, the correct solution turns out to be neater and
far more reliable.

Splitting the I/O Kit and the rest of xnu is not simply
a matter of initially decomposing the system to run inde-
pendently, as interfacing with the separate modules now
involves more work than simply making a direct func-
tion call. One instance of this which we caught relatively
early was the glue between BSD and the I/O Kit. In na-
tive Darwin, disks are exported to user applications us-
ing the traditional BSD-style block (bdevsw) and char-
acter device (cdevsw) switches. User applications that
indirectly or directly access these devices eventually end
up in the BSD client, where it is then possible to call into
the I/O Kit class hierarchy to perform the operation.

This code is problematic because this glue layer deals
with BSD data structures which are not a part of the
I/O Kit class structure. Bringing up an interface usually
meant devising a rather complicated protocol to commu-
nicate between the I/O Kit and xnu and replicating some
BSD data structures.

Using the C++ class hierarchy to our advantage we
can actually move the very top of I/O Kit into xnu. This
will allow us to further free the I/O Kit driver stack of du-
plicated BSD dependencies, as well as provide a much
cleaner interface between the I/O Kit and external mod-
ules such as xnu or Wombat.

4.6 Minimise Changes
Another hard-learned lesson from Darbat is to avoid
taking short-cuts in the name of expediency and short-
term convenience. It is tempting to think that a feature
could simply be emulated by implementing a naive ver-
sion with the required interface. However, as the project
progresses and more subsystems are brought up, it can
cause problems due to missing features or incorrect se-
mantics in the emulation.

Some specific examples of this are trying to short-
circuit the bootup path, trying to remove Mach, using
an ELF-based development toolchain instead of the na-

7



tive Mach-O toolchain and trying to modify the Mach
scheduler without fully understanding it.

5 Related Work

Virtualisation, and especially para-virtualisation are well
known techniques. There is an abundance of work in this
area. In this section we discuss a few very particular sys-
tems, however there is a lot more knowledge than would
fit in this paper.

5.1 Linux on L4

There have been various attempts at porting a mono-
lithic operating system system to run as a guest on top
of L4. One such attempt has been done by Härtig et
al. [HHL+97]. In their work, they modified the Linux
kernel to run on top of L4. More recently, Leslie et
al. [LvSH05] ported version 2.6 of the Linux kernel to
run as a para-virtualised guest on top of L4. TU-Dresden
also has a port of the 2.6 series of the Linux kernel to
their implementation of the L4 microkernel [Tec].

5.2 Mach-based Operating Systems

Various attempts have been made to port UNIX to the
Mach microkernel, such as the work done by Helander
[Hel94] and Golub et al. [GDFR90], who ported UNIX
to run as a guest operating system on Mach. Darwin
itself is a UNIX on top of the Mach microkernel, al-
though nowadays it is virtually devoid of any features
of a microkernel-based design. It should be noted, how-
ever, that these efforts usually ported the entire kernel,
including device drivers, to run as a separate process on
top of the microkernel.

5.3 Multiserver Operating Systems

The multiserver approach to building operating system
revolves around designing the system in such a way
that subsystems are separated into isolated components.
Figure 5 illustrates the design of a multiserver system.
One of the most well-known multiserver OS with UNIX
compatibility is MINIX. The latest release of MINIX,
version 3, boasts that it is targeted at real-world em-
bedded applications which makes it different from being
an academic curiosity that previous versions have fre-
quently been accused of. In the MINIX system, subsys-
tems such as the memory management subsystem, the
file subsystem and various drivers would all reside in
separate protection domains.

However, refactoring existing operating systems to
such an extent will incur significant engineering costs.
It is possible to design a system from scratch, but that
requires significant effort and it may prove difficult to
leverage the work that has already been done on existing
systems. The SawMill Linux project [GJP+00] is one

Kernel

User applicationUser application

management server
Process Driver

User

Memory

Kernel

Figure 5: A multiserver operating system.

example of an existing system being re-factored into a
multiserver-based operating system.

5.4 Full Virtualisation
Full virtualisation allows for the execution of multiple
guest operating systems on top of a host kernel or hy-
pervisor with no modifications required to the guest. It
is particularly suitable to cases where the guest cannot
be modified. Full virtualisation involves rewriting and
emulating sensitive instruction at run-time in the hyper-
visor.

While such a virtualisation technique would allow for
many different type of guests to run without any modi-
fications, it also leads to sub-optimal performance since
you cannot batch hypervisor calls.

Parallels [Par] and VMWare [VMW] are examples of
products that implement full virtualisation.

5.5 Para-virtualisation
Para-virtualisation recognizes that performance using
full virtualisation is sub-optimal, and addresses this by
modifying the guest operating system to be hypervisor-
aware. Para-virtualisation involves porting the guest op-
erating system to an interface specified by the hypervi-
sor. The hypervisor in para-virtualisation is a specialised
kernel that runs with supervisory privileges that han-
dles privileged calls on the guests’ behalf. Performance-
wise, para-virtualisation performs better than full virtu-
alisation, however, it incurs the cost of porting the guest
to the hypervisor API, as well as being only applicable
to operating systems where the source is available, or
where a vendor is willing to port the operating system
to the hypervisor API. Xen [BDF+03] is a very well-
known example of a hypervisor that utilises the para-
virtualisation technique.

While typical hypervisors such as Xen and L4 share
a lot in common in terms of functionality, there are also
subtle differences. Xen provides an abstraction of the
machine hardware. This means that an operating system
is ported to run on top of Xen for a particular CPU type,
and porting to another architecture implies another port
of Xen.

8



L4, however, provides are more general abstraction
providing threads, messages and paged address spaces
with little overhead. This allows us to move modules
running L4 to other L4 architectures with very little ef-
fort. This also means that isolated modules on top of L4
are cheaper since they need not worry about maintain-
ing their own threads or address space since it is already
provided.

6 Current Status and Future Work

Currently, the L4/Darwin system is very much a work
in progress. However, the system is already able to
boot into into single user mode and can run a vast set
of unmodified command-line tools. On the driver side,
since the release of production Intel-based Apple hard-
ware, the I/O Kit has been made to work with various bi-
nary drivers as shipped by Apple without modification.
Although many drivers have not been tested and some
will require further work for correct operation, we rou-
tinely use various Apple-supplied drivers for our day-to-
day testing and development work, including disk con-
troller drivers and USB controller drivers. Other types of
drivers, including graphics drivers, ethernet drivers and
sound drivers are known to load correctly but have not
been extensively tested.

The L4/Darwin project is already able to partially act
as a drop-in replacement for the original Darwin ker-
nel. L4/Darwin boots to single user mode on a standard
Mac OS X install by simply replacing three files, namely
the kernel, the dynamic linker and libc.

Darbat is currently under heavy active development
and various features are planned for the next few re-
leases. This includes full para-virtualisation of both the
Mach/BSD portion and the I/O Kit, demonstration of
restartable device drivers by running multiple I/O Kit
instances, and more complete interfacing support that
would allow us to run a full Mac OS X system on
L4/Darwin.

Although we have found we cannot simply replace
Mach-based IPC with L4 IPC in general, we also plan
to identify any expensive IPC messages for specific op-
timisation. This may involve techniques such as modi-
fying the MIG code generator or run-time detection of
suitable messages.

7 Conclusions

The UNIX “small is beautiful” philosophy does not gen-
erally extend into the kernel itself. This has left the
UNIX kernel with a large, unwieldy and inflexible code
base.

In this paper we have presented Darbat, a modularisa-
tion of the Darwin kernel. Darbat partitions the existing
kernel into driver and kernel modules, each of which run

as de-privileged processes for fault isolation. This al-
lows Darbat to bring the flexibility and robustness of a
user environment to the kernel itself. A flexible kernel
design will ultimately lead to modular code providing
standard virtualisation features.

The Darwin kernel has proven to be an excellent can-
didate for this work. The already modular nature of the
kernel has made it relatively straight forward to com-
ponentise. Even with drastic changes to the runtime
environment, however, Darbat maintains binary com-
patibility with user-mode applications and kernel-mode
drivers.

At the cost of reliability, the Darwin kernel co-locates
kernel modules with Mach for performance. Our exper-
iments using L4 have so far shown that performance is a
problem with the Mach design and not microkernels in
general.

Although a work in progress, our result so far show
that the Darbat approach provides flexibility in ker-
nel composition while maintaining competitive perfor-
mance and binary compatibility with native systems.

7.1 Code availability
The code and documentation for the L4/Darwin project
is available athttp://www.ertos.nicta.com.
au/software/darbat/. The current release at the
time of writing is 0.2, which is based on the Darwin 8.2
source code.

References
[App00] Apple releases Darwin 1.0 open source.

http://www.apple.com/pr/
library/2000/apr/05darwin.
html, 2000.

[App04] Apple Computer Inc.Introduction to I/O Kit
Fundamentals, 2004.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization.
In Proceedings of the 19th ACM Symposium
on OS Principles, pages 164–177, Bolton
Landing, NY, USA, October 2003.

[CYC+01] Andy Chou, Jun-Feng Yang, Benjamin
Chelf, Seth Hallem, and Dawson Engler. An
empirical study of operating systems errors.
In Proceedings of the 18th ACM Sympo-
sium on OS Principles, pages 73–88, Lake
Louise, Alta, Canada, October 2001.

[DJT89] Richard P. Draves, Michael B. Jones, and
Mary R. Thompson. MIG - the MACH in-
terface generator, 1989.

9



[GDFR90] David B. Golub, Randall W. Dean, Alessan-
dro Forin, and Richard F. Rashid. UNIX as
an application program. InUSENIX Sum-
mer, pages 87–95, 1990.

[GJP+00] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke,
K. Elphinstone, V. Uhlig, J. Tidswell,
L. Deller, and L. Reuther. The sawmill mul-
tiserver approach, 2000.

[Hel94] Johannes Helander. Unix under Mach: The
Lites server. Master’s thesis, Helsinki Uni-
versity of Technology, 1994.

[HHL+97] Hermann Härtig, Michael Hohmuth, Jochen
Liedtke, Sebastian Schönberg, and Jean
Wolter. The performance ofµ-kernel-based
systems. InProceedings of the 16th ACM
Symposium on OS Principles, pages 66–77,
St. Malo, France, October 1997.

[L4K] L4Ka Team. L4Ka::Pistachio kernel.
http://l4ka.org/projects/
pistachio/.

[Lee05] Geoffrey Lee. I/O kit drivers for L4. BE the-
sis, School of Computer Science and Engi-
neering, University of NSW, Sydney 2052,
Australia, November 2005.

[Lie95] Jochen Liedtke. Onµ-kernel construction.
In Proceedings of the 15th ACM Symposium
on OS Principles, pages 237–250, Copper
Mountain, CO, USA, December 1995.

[LUC+05] Joshua LeVasseur, Volkmar Uhlig, Matthew
Chapman, Peter Chubb, Ben Leslie, and
Gernot Heiser. Pre-virtualization: Slashing
the cost of virtualization. Technical Report
PA005520, National ICT Australia, October
2005.

[LUSG04] Joshua LeVasseur, Volkmar Uhlig, Jan
Stoess, and Stefan Götz. Unmodified de-
vice driver reuse and improved system de-
pendability via virtual machines. InPro-
ceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementa-
tion, San Francisco, CA, USA, December
2004.

[LvSH05] Ben Leslie, Carl van Schaik, and Gernot
Heiser. Wombat: A portable user-mode
Linux for embedded systems. InProceed-
ings of the 6th Linux.Conf.Au, Canberra,
April 2005.

[NIC] NICTA::Pistachio-embedded kernel.
http://www.ertos.nicta.com.
au/software/kenge/pistachio/
latest/.

[Par] Parallels, Inc. Parallels.http://www.
parallels.com/.

[RJO+89] R.F. Rashid, D. Julin, D. Orr, R. Sanzi,
R. Baron, A. Forin, D. Golub, and M. Jones.
Mach: a system software kernel.Spring
COMPCON, pages 176–8, 1989.

[Tec] Technische Universität Dresden. L4Linux.
http://os.inf.tu-dresden.de/
L4/LinuxOnL4/.

[VMW] VMWare, Inc. VMWare. http://www.
vmware.com/.

10


